

SOFTWARE
DEVELOPMENT BEST
PRACTICES

Jan 2025

Version 1.0

Best practices: Delta Lake

Prepared For

Public

www.pizenith.com Blog Repos X Info

http://www.pizenith.com
https://pizenith.com/blogs
https://github.com/orgs/pizenith-technologies/repositories
https://x.com/pizenith_tech
https://www.linkedin.com/company/pizenith-technologies/

© Copyright 2025-26, Pizenith Technologies LLP

Every Pizenith Technologies document is prepared for the sole and exclusive use of

the party or organization to which it is addressed. Therefore, Pizenith considers its

proposals to be proprietary, and they may not be made available to anyone other than

the addressee or persons within the addressee’s organizations who are designated to

evaluate or consider the proposal. The proposals may be made available to other

persons or organizations only with the permission of the company office issuing the

proposal. Other than for the purposes of evaluating this proposal, no part of this work

may be reproduced or transmitted in any form or by any means, electronic or

mechanical, including photocopying and recording, or by any information storage or

retrieval system, except as may be permitted in writing by Pizenith. All other

product or company names mentioned are used for identification purposes only and

may be trademarks of their respective owners.

Prepared By

Pizenith Technologies LLP

Jan 20, 2025

General Use Case

www.pizenith.com Blog Repos X Info

http://www.pizenith.com
https://pizenith.com/blogs
https://github.com/orgs/pizenith-technologies/repositories
https://x.com/pizenith_tech
https://www.linkedin.com/company/pizenith-technologies/

INDEX

Best practices: Delta Lake 0

Prepared For 0
Prepared By 1

Best practices: Delta Lake On DataBricks 3
Remove Legacy Delta Configurations 3
Use liquid clustering for optimized data skipping 3
Replace the content or schema of a table 4
Spark caching 5
Improve performance for Delta Lake merge 5
Enhanced checkpoints for low-latency queries 6
Enable enhanced checkpoints for Structured Streaming queries 6

www.pizenith.com Blog Repos X Info

http://www.pizenith.com
https://pizenith.com/blogs
https://github.com/orgs/pizenith-technologies/repositories
https://x.com/pizenith_tech
https://www.linkedin.com/company/pizenith-technologies/

Best practices: Delta Lake On DataBricks
Delta Lake is an enhanced storage layer that serves as the backbone for
tables within a lakehouse architecture on Databricks. As an open-source
project, Delta Lake extends Parquet files by adding a file-based transaction
log, enabling ACID transactions and efficient metadata management. It
integrates seamlessly with Apache Spark APIs and is designed to work
closely with Structured Streaming, allowing the use of a single data copy for
both batch and streaming operations, while offering scalable incremental
processing.

On Databricks, Delta Lake is the default format for all tables, unless specified
otherwise. All Databricks tables are, by default, Delta tables. The Delta Lake
protocol was originally created by Databricks and continues to be actively
maintained within the open-source community. Many of the enhancements
and features available on the Databricks platform leverage the guarantees
offered by Apache Spark and Delta Lake. For further details on optimization
techniques within Databricks, refer to the platform's optimization guidelines.

Remove Legacy Delta Configurations
 Databricks advises eliminating most legacy Delta configurations from both Spark
settings and table properties when upgrading to a newer Databricks Runtime
version. Retaining these old configurations may block the application of new
optimizations and default settings introduced by Databricks, potentially affecting
migrated workloads.

Use liquid clustering for optimized data skipping

 Databricks suggests using liquid clustering instead of partitioning, Z-ordering,
or other data organization techniques to enhance data layout for efficient data
skipping. For more details, refer to the guide on using liquid clustering for
Delta tables.

www.pizenith.com Blog Repos X Info

http://www.pizenith.com
https://pizenith.com/blogs
https://github.com/orgs/pizenith-technologies/repositories
https://x.com/pizenith_tech
https://www.linkedin.com/company/pizenith-technologies/

Replace the content or schema of a table

There may be situations where you need to replace a Delta table, such as when you
discover incorrect data and need to update the content, or when making incompatible
schema changes like altering column types. Although it is possible to delete the entire
directory of a Delta table and create a new one at the same path, this approach is not
recommended due to the following reasons:

- Deleting a directory can be time-consuming, especially if it contains large files,
potentially taking hours or even days.

- Deleting files results in losing all content, making it difficult to recover if the wrong
table is deleted.

- The directory deletion process is not atomic, so while the table is being deleted, a
concurrent query could either fail or encounter a partial version of the table.

If you don't need to alter the schema, you can simply remove the data from a Delta
table and insert or update the data to correct any issues. However, if schema changes
are necessary, you can atomically replace the entire table.

For example:

``` 

dataframe.write \ 

  .mode("overwrite") \ 

  .option("overwriteSchema", "true") \ 

  .saveAsTable("<your-table>") # Managed table 

 

dataframe.write \ 

  .mode("overwrite") \ 

  .option("overwriteSchema", "true") \ 

  .option("path", "<your-table-path>") \ 
  .saveAsTable("<your-table>") # External table 

``` 


www.pizenith.com Blog Repos X Info

http://www.pizenith.com
https://pizenith.com/blogs
https://github.com/orgs/pizenith-technologies/repositories
https://x.com/pizenith_tech
https://www.linkedin.com/company/pizenith-technologies/

Spark caching
Databricks does not recommend that you use Spark caching for the following reasons:

- You lose any data skipping that can come from additional filters added on top of the
cached DataFrame.

- The data that gets cached might not be updated if the table is accessed using a
different identifier.

Improve performance for Delta Lake merge
To speed up the merge operation, you can use several strategies:

- Reduce the search space for matches: By default, the merge operation scans the
entire Delta table to find matches in the source table. You can optimize this by
adding known constraints to the match condition to limit the search space. For
instance, if your table is partitioned by country and date, and you want to merge
data for a specific country and date, adding conditions like `events.date =
current_date() AND events.country = 'USA'` ensures the query only checks relevant
partitions, speeding up the process. Additionally, this reduces the likelihood of
conflicts with concurrent operations. For more on isolation levels and write conflicts,
see Databricks documentation.

- Compact files: If the data is spread across many small files, searching for matches
can be slow. Compacting smaller files into larger ones can improve read
throughput. Refer to the section on optimizing data file layout for more details.

- Control shuffle partitions for writes: During a merge, data is shuffled multiple
times to compute and write the updates. The number of shuffle tasks is controlled
by the Spark configuration `spark.sql.shuffle.partitions`. Adjusting this parameter
can affect both parallelism and the number of output files. Increasing the value
boosts parallelism but also creates smaller files.

- Enable optimized writes: In partitioned tables, a merge can generate many small
files, potentially leading to performance bottlenecks. Enabling optimized writes

www.pizenith.com Blog Repos X Info

http://www.pizenith.com
https://pizenith.com/blogs
https://github.com/orgs/pizenith-technologies/repositories
https://x.com/pizenith_tech
https://www.linkedin.com/company/pizenith-technologies/

helps reduce the number of files created during the merge process. For more
details, see the section on optimized writes for Delta Lake.

- Tune file sizes in the table: Databricks automatically detects if frequent merge
operations are rewriting files and adjusts the size of rewritten files accordingly to
improve future operations. Check the tuning file sizes section for more details.

- Low Shuffle Merge: Low Shuffle Merge is an optimized MERGE implementation
that improves performance for most use cases. It preserves data layout
optimizations, such as Z-ordering, for unmodified data, providing better overall
performance.

Enhanced checkpoints for low-latency queries
Delta Lake creates checkpoints to store an aggregated state of a Delta table at an
optimized frequency. These checkpoints serve as a reference point for computing the most
up-to-date state of the table. Without checkpoints, Delta Lake would need to process
numerous JSON files ("delta" files) that represent commits to the transaction log, which
could be inefficient. Additionally, the column-level statistics used for data skipping are
stored within the checkpoint, enhancing performance during queries.

Enable enhanced checkpoints for Structured Streaming
queries

If your Structured Streaming workloads don’t have low latency requirements (subminute
latencies), you can enable enhanced checkpoints by running the following SQL command:

``` 

ALTER TABLE <table-name> SET TBLPROPERTIES 
('delta.checkpoint.writeStatsAsStruct' = 'true') 

``` 


www.pizenith.com Blog Repos X Info

http://www.pizenith.com
https://pizenith.com/blogs
https://github.com/orgs/pizenith-technologies/repositories
https://x.com/pizenith_tech
https://www.linkedin.com/company/pizenith-technologies/

You can also improve the checkpoint write latency by setting the following table properties:

``` 

ALTER TABLE <table-name> SET TBLPROPERTIES 

( 

 'delta.checkpoint.writeStatsAsStruct' = 'true', 

 'delta.checkpoint.writeStatsAsJson' = 'false' 
) 

``` 

If data skipping is not useful in your application, you can set both properties to false. Then
no statistics are collected or written. Databricks does not recommend this configuration.

For more information and read the original source check here

www.pizenith.com Blog Repos X Info

https://docs.gcp.databricks.com/en/delta/best-practices.html#language-python
http://www.pizenith.com
https://pizenith.com/blogs
https://github.com/orgs/pizenith-technologies/repositories
https://x.com/pizenith_tech
https://www.linkedin.com/company/pizenith-technologies/

	SOFTWARE DEVELOPMENT BEST PRACTICES
	
	Best practices: Delta Lake
	Prepared For
	Prepared By

	
	Best practices: Delta Lake On DataBricks
	Remove Legacy Delta Configurations
	Use liquid clustering for optimized data skipping
	Replace the content or schema of a table
	Spark caching
	Improve performance for Delta Lake merge
	Enhanced checkpoints for low-latency queries
	Enable enhanced checkpoints for Structured Streaming queries

