

SOFTWARE
DEVELOPMENT BEST
PRACTICES

Jan 2025

Version 1.0

Production Checklist: Best Practices to Follow

Prepared For

Public

www.pizenith.com Blog Repos X Info

http://www.pizenith.com
https://pizenith.com/blogs
https://github.com/orgs/pizenith-technologies/repositories
https://x.com/pizenith_tech
https://www.linkedin.com/company/pizenith-technologies/

© Copyright 2025-26, Pizenith Technologies LLP

Every Pizenith Technologies document is prepared for the sole and exclusive use of

the party or organization to which it is addressed. Therefore, Pizenith considers its

proposals to be proprietary, and they may not be made available to anyone other than

the addressee or persons within the addressee’s organizations who are designated to

evaluate or consider the proposal. The proposals may be made available to other

persons or organizations only with the permission of the company office issuing the

proposal. Other than for the purposes of evaluating this proposal, no part of this work

may be reproduced or transmitted in any form or by any means, electronic or

mechanical, including photocopying and recording, or by any information storage or

retrieval system, except as may be permitted in writing by Pizenith. All other

product or company names mentioned are used for identification purposes only and

may be trademarks of their respective owners.

Prepared By

Pizenith Technologies LLP

Jan 20, 2025

General Use Case

www.pizenith.com Blog Repos X Info

http://www.pizenith.com
https://pizenith.com/blogs
https://github.com/orgs/pizenith-technologies/repositories
https://x.com/pizenith_tech
https://www.linkedin.com/company/pizenith-technologies/

INDEX

Production Checklists: Best Practice to Follow 0

Prepared For 0
Prepared By 1

Production Ready Checklist 3
General 3
Disaster Recovery 3
Deployment 4
Operations 4
Testing 4
Resiliency 5
Security 5
Governance, Risk, and Compliance (GRC) 5

www.pizenith.com Blog Repos X Info

http://www.pizenith.com
https://pizenith.com/blogs
https://github.com/orgs/pizenith-technologies/repositories
https://x.com/pizenith_tech
https://www.linkedin.com/company/pizenith-technologies/

Production Ready Checklist

Production deployment refers to the process of moving code changes from a
development environment to a live production environment, making them
accessible to end users. This process requires collaboration between multiple
teams, including development, quality assurance, and operations teams.

The main goal of production deployment is to ensure that the code changes
are deployed with minimal downtime and that the end users are not
impacted negatively. This requires careful planning and execution, as well as
thorough testing in the development environment, to ensure that the code
changes function as expected.

General
 Ownership: Service owners are identified. Contact information and methods are
provided.

 Onboarding: Integration instructions for APIs are documented.
 Defined service-level indicators (SLIs) / service-level objectives (SLOs) /
service-level agreements (SLAs): The SLIs and SLOs are documented and
accessible. If applicable, you’ve also documented the SLAs.

Disaster Recovery

 Disaster recovery (DR): DR plans have been documented and tested.
 Backups: Backups of data occur regularly.
 Redundancy: Services should include at least two instances and could require
deployment in multiple regions or locations.

www.pizenith.com Blog Repos X Info

http://www.pizenith.com
https://pizenith.com/blogs
https://github.com/orgs/pizenith-technologies/repositories
https://x.com/pizenith_tech
https://www.linkedin.com/company/pizenith-technologies/

Deployment

 Deployment strategy: The automated deployment strategy has been documented.
For example, strategies include blue-green, canary, or others to create safer
zero-downtime deployments.

 Continuous integration: When engineers commit their changes, the system kicks
off automated builds, tests, and deployment to a lower level environment.

 Continuous delivery: Deploying to production involves nothing more than approval
and a click of a button. Changelogs and release notes indicate what changes exist in
each environment.

 Static code analysis: Code is automatically scanned, formatted, or linted according
to coding standards.

Operations
 On-call policy: The service has an on-call system that pages the owning team for
incidents. Ideally, this involves tools like PagerDuty or Squadcast.

 Incident management: The incident management and escalation processes have
been documented. This includes processes for postmortem and long-term
remediation.

 Runbooks: Runbooks have been written and are accessible, with known failure
scenarios. You update runbooks whenever a new scenario is uncovered.

 Logging: The service utilizes centralized logs, and the logs can be accessed easily.
 Metrics: At a minimum, the Four Golden Signals are available for the service.
 Tracing: The application transactions can be traced, using the appropriate tools and
sampling configuration for the service.

Testing
 Unit tests: Unit tests execute at every code push, automatically.
 Integration tests: If appropriate, automated integration tests execute and pass
successfully.

 End-to-end or acceptance tests: Automated end-to-end or acceptance tests run as
part of the continuous integration / continuous deployment (CI/CD pipeline). If
manual testing is required, test results are documented.

 Broken tests: Failing tests break the build.

www.pizenith.com Blog Repos X Info

http://www.pizenith.com
https://pizenith.com/blogs
https://github.com/orgs/pizenith-technologies/repositories
https://x.com/pizenith_tech
https://www.linkedin.com/company/pizenith-technologies/

Resiliency
 Load testing: Load tests are automated or occur on a regular cadence. You
document and publish the results.

 Stress testing: Stress tests are automated or occur on a regular cadence. You
document and publish the results.

 Chaos engineering: Once the applications have proven the ability to stand up to
load and stress, chaos engineering is integrated to identify weak points and
opportunities to reduce failures.

Security
 Authentication/authorization: Each service or application requires proper
authentication and authorization.

 Secrets management: Secrets are secured properly in a vault or secret store. Tools
like truffleHog or git-secrets scan code to identify potential secrets.

 Static application security testing (SAST): Static code analysis tools like
Checkmarx or Snyk monitor code in the CI/CD pipeline. The build breaks any time
there are security vulnerabilities above a certain threshold. Thresholds are set
based on service needs.

 Dynamic application security testing (DAST) / penetration (pen) testing:
Automated DAST runs at appropriate intervals. Manual DAST or pen testing runs
according to the security requirements of the service or company. As a note, some
companies require DAST or pen testing prior to large changes or launches. Others
run them quarterly. Your production readiness checklist should include the
appropriate cadence for your situation.

 Dependency scan: All dependencies are using the latest or patched versions. For
this, consider automating the scan using tools like FOSSA or Nexus Vulnerability
Scanner to validate versions and licenses.

Governance, Risk, and Compliance (GRC)

 GRC documentation: GRC checklists have been completed as required. Many
companies have a separate GRC system available. In that case, this checklist
indicates its completion and documentation.

www.pizenith.com Blog Repos X Info

http://www.pizenith.com
https://pizenith.com/blogs
https://github.com/orgs/pizenith-technologies/repositories
https://x.com/pizenith_tech
https://www.linkedin.com/company/pizenith-technologies/

 Confidentiality, integrity, availability (CIA) rating: The CIA rating of the
service has been documented and published

Development
 Follow best practices from Cloud Provider (e.g. AWS Aurora) and prepare for Fast
Failover

 Data Org support (external team might have such requirements) - DB needs to be
in provisioned mode instead of serverless if Bin Logs are used for exporting data,
use bigger instances than t.small ones (e.g. t.small instances don’t support IAM
access)

 Database’s Connection string and Connection pool configured for the needed
workload

 Maintenance window defined
 Logging: All logs are written to STDOUT / STDERR. Logs are written in JSON.
Configured verbosity levels. check - https://12factor.net/logs. Do not log any
sensitive data.

 Integration with monitoring platforms. Dashboards in place. (e.g. NewRelic /
Prometheus / Grafana)

 Monitoring dashboards with Business Metrics (e.g. New Relic / Prometheus /
Grafana)

 Readme.md - self-explanatory service name, how to run it locally and
domain/subdomain, bounded context described

 Architecture docs / C4 Model diagrams
 Service Catalog integration (e.g. Backstage)
 API Open Specification file in root directory openapi.yaml
 API versioning if needed

www.pizenith.com Blog Repos X Info

http://www.pizenith.com
https://pizenith.com/blogs
https://github.com/orgs/pizenith-technologies/repositories
https://x.com/pizenith_tech
https://www.linkedin.com/company/pizenith-technologies/

	SOFTWARE DEVELOPMENT BEST PRACTICES
	
	Production Checklist: Best Practices to Follow
	Prepared For
	Prepared By

	
	Production Ready Checklist
	General
	Disaster Recovery
	Deployment
	Operations
	Testing
	Resiliency
	Security
	Governance, Risk, and Compliance (GRC)
	Development

