

SOFTWARE
DEVELOPMENT BEST
PRACTICES

Jan 2025

Version 1.0

Python: Best Practice with Code Checklist

Prepared For

Public

www.pizenith.com Blog Repos X Info

http://www.pizenith.com
https://pizenith.com/blogs
https://github.com/orgs/pizenith-technologies/repositories
https://x.com/pizenith_tech
https://www.linkedin.com/company/pizenith-technologies/

© Copyright 2025-26, Pizenith Technologies LLP

Every Pizenith Technologies document is prepared for the sole and exclusive use of

the party or organization to which it is addressed. Therefore, Pizenith considers its

proposals to be proprietary, and they may not be made available to anyone other than

the addressee or persons within the addressee’s organizations who are designated to

evaluate or consider the proposal. The proposals may be made available to other

persons or organizations only with the permission of the company office issuing the

proposal. Other than for the purposes of evaluating this proposal, no part of this work

may be reproduced or transmitted in any form or by any means, electronic or

mechanical, including photocopying and recording, or by any information storage or

retrieval system, except as may be permitted in writing by Pizenith. All other

product or company names mentioned are used for identification purposes only and

may be trademarks of their respective owners.

Prepared By

Pizenith Technologies LLP

Jan 20, 2025

General Use Case

www.pizenith.com Blog Repos X Info

http://www.pizenith.com
https://pizenith.com/blogs
https://github.com/orgs/pizenith-technologies/repositories
https://x.com/pizenith_tech
https://www.linkedin.com/company/pizenith-technologies/

INDEX

Python: Best Practice with Code Checklist 0

Prepared For 0
Prepared By 1

Best Practices 3
Code Quality Tools 6

Pylint 6
Flake8 6
Bandit 6
Pre-commit 6
Black 7

Testing Libraries and Methods 7
Unittest 7
Pytest 7
Assert Statement 7

Code Review Checklist 8
Sample Code Repository 8

www.pizenith.com Blog Repos X Info

http://www.pizenith.com
https://pizenith.com/blogs
https://github.com/orgs/pizenith-technologies/repositories
https://x.com/pizenith_tech
https://www.linkedin.com/company/pizenith-technologies/

Best Practices

Best practices in coding refer to a set of guidelines and techniques that aim
to improve code quality, maintainability, and efficiency. Here are some widely
followed best practices across programming languages:

1. Write Readable Code:
- Write code that is easy to understand and follow. Use meaningful

variable and function names, and write comments to explain what the
code does.

2. Use Version Control:
- Use version control systems, such as Git, to manage changes made to

code over time. This allows you to revert to a previous version of the
code if needed and makes it easier to collaborate with others.

3. Write Unit Tests:
- Write automated tests to validate the behavior of your code. This

helps to catch bugs early in the development process and makes it
easier to maintain the code over time.

4. Follow Coding Standards:
- Follow coding standards, such as the PEP 8 Style Guide for Python or

the Google Java Style Guide, to write consistent and readable code.

5. Refactor Code Regularly:
- Regularly review and refactor your code to remove redundant or

complex code. This helps to improve code readability and
maintainability and makes it easier to add new features.

6. Document Code:

www.pizenith.com Blog Repos X Info

http://www.pizenith.com
https://pizenith.com/blogs
https://github.com/orgs/pizenith-technologies/repositories
https://x.com/pizenith_tech
https://www.linkedin.com/company/pizenith-technologies/

- Document your code by writing comments and documentation. This makes it
easier for others to understand the code and for you to remember how it
works in the future.

7. Use Error Handling:
- Use error handling techniques, such as exceptions, to handle errors

and unexpected conditions in your code.

8. Avoid Hard-Coding Values:
- Avoid hard-coding values, such as file paths or API keys, in your code.

Instead, use configuration files or environment variables to store these
values.

9. Use Appropriate Data Structures:
- Use appropriate data structures, such as arrays, lists, or dictionaries,

to store and manipulate data. This helps to improve code performance
and readability.

10. Keep Code Modular:
- Write code that is modular, meaning it is divided into small,

self-contained units. This makes it easier to maintain and reuse code
and makes it easier to test individual parts of the code.

11. Use Named Tuples Instead of Dictionaries:
- Named tuples are a lightweight alternative to dictionaries and provide

a way to store data in a named, ordered format. They are faster than
dictionaries and use less memory, making them a good choice for
data-intensive applications.

12. Avoid Global Variables:
- Global variables can make code difficult to maintain and test, as

changes to one part of the code can affect other parts. Instead, use
function arguments and return values to pass data between parts of
the code.

13. Use List Comprehensions:

www.pizenith.com Blog Repos X Info

http://www.pizenith.com
https://pizenith.com/blogs
https://github.com/orgs/pizenith-technologies/repositories
https://x.com/pizenith_tech
https://www.linkedin.com/company/pizenith-technologies/

- List comprehension provides a concise and readable way to create
lists and are faster than traditional loops. Use them instead of loops
whenever possible.

14. Use Generators:
- Generators are a way to produce a sequence of values one at a time,

on demand. They are more memory-efficient than lists, as they only
store the current value, not the entire sequence.

15. Use Virtual Environments:
- Virtual environments provide a way to isolate the dependencies of

your Python project from other projects. This makes it easier to
manage dependencies and ensures that your code will run the same
way on different machines.

16. Use SOLID Principles:
- The SOLID principles are guidelines for writing maintainable and

scalable software. They aim to reduce dependencies so that engineers
can change one area of software without impacting others. These
principles make designs easier to understand, maintain, and extend.

www.pizenith.com Blog Repos X Info

http://www.pizenith.com
https://pizenith.com/blogs
https://github.com/orgs/pizenith-technologies/repositories
https://x.com/pizenith_tech
https://www.linkedin.com/company/pizenith-technologies/

Code Quality Tools

Code quality tools are used to analyze and improve the quality of code in software

development. Here are some of the most popular code quality tools in Python:

Pylint
- A static code analysis tool that checks for errors, coding standard violations,

and best practices. It provides a detailed report that includes information
about code complexity, performance, security issues, and more.

Flake8
- A linter that combines the functionality of Pyflakes, Pycodestyle, and the

McCabe complexity checker. It analyzes code for coding standards, syntax
errors, and other Issues.

Bandit
- A security-focused code analysis tool that checks for common security

issues, such as cross-site scripting (XSS) vulnerabilities, SQL injection, and
hardcoded secrets. It supports custom plugins, making it a powerful tool for
checking code quality and security in Python applications.

Pre-commit
- A Python-based software development tool that allows you to manage and

maintain your project's Git hooks. Git hooks are scripts that run automatically
before or after certain Git events, such as committing code or pushing to a
remote repository. With pre-commit, you can define a set of hooks for your
project, making it easier to enforce best practices and keep your codebase
consistent.

- More info: [Pre-commit](https://pre-commit.com/#plugins)

www.pizenith.com Blog Repos X Info

http://www.pizenith.com
https://pizenith.com/blogs
https://github.com/orgs/pizenith-technologies/repositories
https://x.com/pizenith_tech
https://www.linkedin.com/company/pizenith-technologies/

Black
- A popular Python code formatting tool that enforces a strict and uniform

code style by automatically reformatting code to follow the PEP 8 style
guide. It's fast, uncomplicated, and highly opinionated, promoting
consistency and reducing manual intervention.Isort

- A Python library for sorting imports in a standardized and customizable way,
improving the readability and maintainability of code. It can be combined
with other code quality tools and integrated into development environments.

Testing Libraries and Methods

Python has a rich ecosystem of testing libraries and tools that make it easier to
write and run tests for your code. Here are some popular Python testing libraries
and methods:

Unittest
- A built-in testing library in Python that provides a framework for writing and

running tests. It supports test automation, sharing of setup and shutdown
code for tests, aggregation of tests into collections, and independence of the
tests from the reporting framework.

Pytest
- A popular third-party testing library designed to make it easier to write and

run tests. It has a simple and intuitive API, supports fixtures and plugins,
and features like parallel testing and detailed test reporting.

Assert Statement
- The assert statement is a simple way to write tests in Python. You can use

the assert statement to check that an expression is true and raise an
exception if it is not. This can be used to write simple tests or as a starting
point for more complex testing frameworks.

www.pizenith.com Blog Repos X Info

http://www.pizenith.com
https://pizenith.com/blogs
https://github.com/orgs/pizenith-technologies/repositories
https://x.com/pizenith_tech
https://www.linkedin.com/company/pizenith-technologies/

Code Review Checklist

- Are all new packages used included in `requirements.txt`?
- Does the code pass all lint checks?
- Do functions use type hints, and are there any type hint errors?
- Is the code readable and does it use Pythonic constructs wherever possible?

Sample Code Repository

The repository below is available on Pizenith Public Github and contains a multi-

module Python project with best practices and standards implemented. Steps to
run and explore are present in the readme.

- Repo Link
(https://github.com/pizenith-technologies/python_best_practices)

www.pizenith.com Blog Repos X Info

https://github.com/pizenith-technologies/python_best_practices
http://www.pizenith.com
https://pizenith.com/blogs
https://github.com/orgs/pizenith-technologies/repositories
https://x.com/pizenith_tech
https://www.linkedin.com/company/pizenith-technologies/

	SOFTWARE DEVELOPMENT BEST PRACTICES
	
	Python: Best Practice with Code Checklist
	Prepared For
	Prepared By

	
	Best Practices
	
	
	
	
	
	
	Code Quality Tools
	Pylint
	Flake8
	Bandit
	Pre-commit
	Black

	
	
	Testing Libraries and Methods
	Unittest
	Pytest
	Assert Statement

	
	Code Review Checklist
	Sample Code Repository

