

SOFTWARE
DEVELOPMENT BEST
PRACTICES

Feb 2025

Version 1.0

Scala: Best Practices with Code Checklist

Prepared For

Public

www.pizenith.com Blog Repos X Info

http://www.pizenith.com
https://pizenith.com/blogs
https://github.com/orgs/pizenith-technologies/repositories
https://x.com/pizenith_tech
https://www.linkedin.com/company/pizenith-technologies/

© Copyright 2025-26, Pizenith Technologies LLP

Every Pizenith Technologies document is prepared for the sole and exclusive use of

the party or organization to which it is addressed. Therefore, Pizenith considers its

proposals to be proprietary, and they may not be made available to anyone other than

the addressee or persons within the addressee’s organizations who are designated to

evaluate or consider the proposal. The proposals may be made available to other

persons or organizations only with the permission of the company office issuing the

proposal. Other than for the purposes of evaluating this proposal, no part of this work

may be reproduced or transmitted in any form or by any means, electronic or

mechanical, including photocopying and recording, or by any information storage or

retrieval system, except as may be permitted in writing by Pizenith. All other

product or company names mentioned are used for identification purposes only and

may be trademarks of their respective owners.

Prepared By

Pizenith Technologies LLP

Feb 11, 2025

General Use Case

www.pizenith.com Blog Repos X Info

http://www.pizenith.com
https://pizenith.com/blogs
https://github.com/orgs/pizenith-technologies/repositories
https://x.com/pizenith_tech
https://www.linkedin.com/company/pizenith-technologies/

INDEX

Scala: Best Practices with Code Checklist 0

Prepared For 0
Prepared By 1

Best Practices 3
Code Quality Tools 6

Scalafmt 6
Scalafix 6
WartRemover 6
Scoverage 6
Scapegoat 6

Testing Libraries and Methods 7
ScalaTest 7
Specs2 7
MUnit 7
Assert Statement 7

Code Review Checklist 7
Sample Code Repository 8

www.pizenith.com Blog Repos X Info

http://www.pizenith.com
https://pizenith.com/blogs
https://github.com/orgs/pizenith-technologies/repositories
https://x.com/pizenith_tech
https://www.linkedin.com/company/pizenith-technologies/

Best Practices
Best practices in coding refer to a set of guidelines and techniques that aim to improve
code quality, maintainability, and efficiency. Here are some widely followed best
practices for Scala development:

1. Write Readable Code
- Write code that is easy to understand and follow. Use meaningful

variable and function names, and write comments to explain what the
code does.

2. Use Version Control
- Use version control systems, such as Git, to manage changes made to code

over time. This allows you to revert to a previous version of the code if
needed and makes it easier to collaborate with others.

3. Write Unit Tests
- Write automated tests using frameworks like ScalaTest or Specs2 to

validate the behavior of your code. This helps to catch bugs early in the
development process and makes it easier to maintain the code over time.

4. Follow Coding Standards
- Follow coding standards, such as those provided by the Scala Style Guide,

to write consistent and readable code.

5. Refactor Code Regularly
- Regularly review and refactor your code to remove redundant or complex

code. This helps to improve code readability and maintainability and makes
it easier to add new features.

6. Document Code
- Document your code by writing comments and documentation using

Scaladoc. This makes it easier for others to understand the code and for you
to remember how it works in the future.

www.pizenith.com Blog Repos X Info

http://www.pizenith.com
https://pizenith.com/blogs
https://github.com/orgs/pizenith-technologies/repositories
https://x.com/pizenith_tech
https://www.linkedin.com/company/pizenith-technologies/

7. Use Error Handling
- Use error handling techniques, such as Try, Either, and Option, to handle

errors and unexpected conditions in your code.

8. Avoid Hard-Coding Values
- Avoid hard-coding values, such as file paths or API keys, in your code.

Instead, use configuration files or environment variables to store these
values.

9. Use Appropriate Data Structures
- Use appropriate data structures, such as List, Vector, Map, and Set, to

store and manipulate data efficiently.

10. Keep Code Modular
- Write code that is modular, meaning it is divided into small,

self-contained units. This makes it easier to maintain and reuse code
and makes it easier to test individual parts of the code.

11. Prefer Immutability
- Use immutable collections and case classes whenever possible. This

helps prevent unintended side effects and makes code more
predictable.

12. Use Pattern Matching
- Scala's pattern matching is a powerful feature that can simplify control

flow. Use it instead of multiple if-else statements where applicable.

13. Avoid Global State
- Global variables can make code difficult to maintain and test, as

changes to one part of the code can affect other parts. Instead, use
function arguments and return values to pass data between parts of
the code.

www.pizenith.com Blog Repos X Info

http://www.pizenith.com
https://pizenith.com/blogs
https://github.com/orgs/pizenith-technologies/repositories
https://x.com/pizenith_tech
https://www.linkedin.com/company/pizenith-technologies/

14. Use Functional Programming Principles
- Leverage Scala's functional programming capabilities by using

higher-order functions, pure functions, and monads to write concise
and reusable code.

15. Follow SOLID Principles
- The SOLID principles are guidelines for writing maintainable and

scalable software. They aim to reduce dependencies so that engineers
can change one area of software without impacting others. These
principles make designs easier to understand, maintain, and extend.

www.pizenith.com Blog Repos X Info

http://www.pizenith.com
https://pizenith.com/blogs
https://github.com/orgs/pizenith-technologies/repositories
https://x.com/pizenith_tech
https://www.linkedin.com/company/pizenith-technologies/

Code Quality Tools
Code quality tools are used to analyze and improve the quality of code in software
development. Here are some of the most popular code quality tools in Scala:

Scalafmt

A code formatter that enforces a consistent style across a Scala codebase. It
automatically reformats code to follow the predefined style rules.

Scalafix

A tool for linting and refactoring Scala code. It helps catch issues early and
automatically fixes common mistakes.

WartRemover

A linting tool that detects problematic patterns in Scala code and helps enforce best
practices.

Scoverage

A code coverage tool for Scala that helps developers measure the effectiveness of
their tests.

Scapegoat

A static analysis tool that identifies common Scala code issues and recommends
improvements.

www.pizenith.com Blog Repos X Info

http://www.pizenith.com
https://pizenith.com/blogs
https://github.com/orgs/pizenith-technologies/repositories
https://x.com/pizenith_tech
https://www.linkedin.com/company/pizenith-technologies/

Testing Libraries and Methods
Scala has a rich ecosystem of testing libraries and tools that make it easier to write
and run tests for your code. Here are some popular Scala testing libraries and
methods:

ScalaTest

A widely used testing framework that supports multiple testing styles, including BDD,
property-based testing, and unit testing.

Specs2

A testing framework that provides an expressive syntax for writing unit and
integration tests.

MUnit

A minimal testing framework designed for simplicity and speed, often used in
combination with Cats Effect.

Assert Statement

Scala provides built-in assertion mechanisms, such as assert(condition), to verify
expected behavior in tests.

Code Review Checklist
● Are all new dependencies included in build.sbt?
● Does the code pass all lint checks?
● Are functions pure and free of side effects where possible?
● Is the code readable and does it follow idiomatic Scala practices?

www.pizenith.com Blog Repos X Info

http://www.pizenith.com
https://pizenith.com/blogs
https://github.com/orgs/pizenith-technologies/repositories
https://x.com/pizenith_tech
https://www.linkedin.com/company/pizenith-technologies/

Sample Code Repository
The repository below is available on GitHub and contains a multi-module Scala
project with best practices and standards implemented. Steps to run and explore are
present in the readme.

● Repo Link: https://github.com/pizenith-technologies/scala_best_practices

www.pizenith.com Blog Repos X Info

https://github.com/example/scala_best_practices
http://www.pizenith.com
https://pizenith.com/blogs
https://github.com/orgs/pizenith-technologies/repositories
https://x.com/pizenith_tech
https://www.linkedin.com/company/pizenith-technologies/

	SOFTWARE DEVELOPMENT BEST PRACTICES
	
	Scala: Best Practices with Code Checklist
	Prepared For
	Prepared By

	
	Best Practices
	

	
	
	
	
	
	
	
	
	
	
	
	Code Quality Tools
	Scalafmt
	Scalafix
	WartRemover
	Scoverage
	Scapegoat

	
	
	
	
	
	Testing Libraries and Methods
	ScalaTest
	Specs2
	MUnit
	Assert Statement

	Code Review Checklist
	
	
	
	Sample Code Repository

